Lipoxygenase is irreversibly inactivated by the hydroperoxides formed from the enynoic analogues of linoleic acid.

نویسندگان

  • W F Nieuwenhuizen
  • A Van der Kerk-Van Hoof
  • J H van Lenthe
  • R C Van Schaik
  • K Versluis
  • G A Veldink
  • J F Vliegenthart
چکیده

Triple bond analogues of natural fatty acids irreversibly inactivate lipoxygenase during their enzymatic conversion [Nieuwenhuizen, W. F., et al. (1995) Biochemistry 34, 10538-10545]. To gain insight into the mechanism of the irreversible inactivation of soybean lipoxygenase-1, we studied the enzymatic conversion of two linoleic acid analogues, 9(Z)-octadec-9-en-12-ynoic acid (9-ODEYA) and 12(Z)-octadec-12-en-9-ynoic acid (12-ODEYA). During the inactivation process, Fe(III)-lipoxygenase converts 9-ODEYA into three products, i.e. 11-oxooctadec-9-en-12-ynoic acid, racemic 9-hydroxy-10(E)-octadec-10-en-12-ynoic acid, and racemic 9-hydroperoxy-10(E)-octadec-10-en-12-ynoic acid. Fe(II)-lipoxygenase does not convert the inhibitor and is not inactivated by 9-ODEYA. Fe(III)-lipoxygenase converts 12-ODEYA into 13-hydroperoxy-11(Z)-octadec-11-en-9-ynoic acid (34/66 R/S), 13-hydroperoxy11(E)-octadec-11-en-9-ynoic acid (36/64 R/S), 11-hydroperoxyoctadec-12-en-9-ynoic acid (11-HP-12-ODEYA, enantiomeric composition of 33/67), and 11-oxooctadec-12-en-9-ynoic acid (11-oxo-12-ODEYA) during the inactivation process. Also, Fe(II)-lipoxygenase is inactivated by 12-ODEYA. It converts the inhibitor into the same products as Fe(III)-lipoxygenase does, but two additional products are formed, viz. 13-oxo-11(E)-octadec-11-en-9-ynoic acid and 13-oxo-11(Z)-octadec-11-en-9-ynoic acid. The purified reaction products were tested for their lipoxygenase inhibitory activities. The oxo compounds, formed in the reaction of 9-ODEYA and 12-ODEYA, do not inhibit Fe(II)- or Fe(III)-lipoxygenase. The 9- and 13-hydroperoxide products that are formed from 9-ODEYA and 12-ODEYA, respectively, oxidize Fe(II)-lipoxygenase to its Fe(III) state and are weak lipoxygenase inhibitors. 11-HP-12-ODEYA is, however, the most powerful inhibitor and is able to oxidize Fe(II)-lipoxygenase to Fe(III)-lipoxygenase. 11-HP-12-ODEYA is converted into 11-oxo-12-ODEYA by Fe(III)-lipoxygenase. We propose a mechanism for the latter reaction in which Fe(III)-lipoxygenase abstracts the bisallylic hydrogen H-11 from 11-HP-12-ODEYA, yielding a hydroperoxyl radical which is subsequently cleaved into 11-oxo-ODEYA and a hydroxyl radical which may inactivate the enzyme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recent investigations into the lipoxygenase pathway of plants.

The plant lipoxygenase (LOX) pathway is in many respects the equivalent of the 'arachidonic acid cascade' in animals. The LOX-catalyzed dioxygenation of the plant fatty acids, linoleic and linolenic acids, is followed by metabolism of the resulting fatty acid hydroperoxides by other enzymes. Although the physiological functions of the end-products do not appear to be fully defined at this time,...

متن کامل

Products of linoleic hydroperoxide-decomposing enzyme of alfalfa seed.

Alfalfa seeds and seedlings contain an enzyme that catalyzes a reaction with the 13- and 9-hydroperoxides of linoleic acid to form 13-hydroxy-10-oxo-trans-octadecenoic acid and 9-hydroxy-12-oxo-trans-10-octadecenoic acid, respectively. When commercial lipoxygenase is used to generate the hydroperoxides, the above acids appear in about 2:1 proportions, respectively. The products of the action of...

متن کامل

Lipid and oxylipin profiles during aging and sprout development in potato tubers (Solanum tuberosum L.).

Potato tubers (Solanum tuberosum L. cv Bintje) were stored at 20 degrees C for 210 days without desprouting to study the lipoxygenase pathway during aging. After 15 days of storage, potato tubers sprouted, while after 45-60 days, apical dominance was lost and multiple sprouts developed. Analysis of the fatty acid hydroperoxides (HPOs) revealed that 9-S-hydroperoxide of linoleic acid (9-HPOD) wa...

متن کامل

Gardner H W. Decomposition of linoleic acid hydroperoxides. Enzymic reactions compared with nonenzymic. J. Agr. Food Chem. 23: 129-36. 1975

Following research assignments in Hawaii and California, I accepted a position at the Northern Regional Research Center in Peoria (from whence all roads lead to soybean and cornfields), in order to reduce unnecessary but tempting distractions. My time, in those early US Department of Agriculture years, was divided between mission-oriented work and maverick research on the chemistry and biochemi...

متن کامل

Gardner H W. Decomposition of linoleic acid hydroperoxides. Enzymic reactions compared with nonenzymic. J. Agr. Food Chem. 23: 129-36. 1975

Following research assignments in Hawaii and California, I accepted a position at the Northern Regional Research Center in Peoria (from whence all roads lead to soybean and cornfields), in order to reduce unnecessary but tempting distractions. My time, in those early US Department of Agriculture years, was divided between mission-oriented work and maverick research on the chemistry and biochemi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 36 15  شماره 

صفحات  -

تاریخ انتشار 1997